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Dispersive anomalous diffusive transport in ratchets with long-range correlated spatial disorder
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The effects of quenched disorder with long-range spatial correlations on the transport properties of an
overdamped periodic ratchet are investigated. The modified Fourier-filtering method is applied to generate the
long-range correlated spatial disorder with statistical propertiesh(x)h(x8);ux82xu2g, whereg is the corre-
lation exponent. Small amounts of this kind of quenched disorder are introduced in the equation of overdamped
motion of a continuous time system, and the first two momentsC1(t)5^x(t)& andC2(t)5^„x(t)2^x(t)&…2&
are calculated. We show that the drift velocity is almost independent ofg. However, as a consequence of the
long-range spatial correlations, the dispersive anomalous diffusve motion@C2(t);tH# appears in ratchets, with
the difussion exponentH (1,H,2) being dependent ong. Moreover, we show that both the amount of
quenched disorder and the correlation degree can enhance the anomalous diffusive transport.
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The study of ratchets has received much attention du
its role in describing the unidirectional transport of molec
lar motors@1#, in modeling nanoscale friction@2,3#, in sur-
face smoothening@4#, and so on@5,6#. In the previous stud-
ies, the drift velocity for describing the transport of th
particles in asymmetric periodic potentials~ratchets! was
studied by taking into account the time correlated fluct
tions ~noise! @7#. The transport properties were also inves
gated in deterministic, overdamped~or inertia! ratchets in-
cluding a time-periodic force@8–10#, and chaotic transpor
and current reversals could be found in these systems ev
the absence of fluctuations~noise!. More recently, quenched
disorder was found to induce normal chaotic diffusive tra
port in overdamped and underdamped rachets@11,12#. How-
ever, in these studies, the force due to quenched disorder
introduced in the equation of motion through the presenc
uniformly distributed random variables with no spatially co
relations, and the effects of spatially correlated disorder h
been neglected@11–14#. In fact, in many real disordered ma
terials, such as polymers, porous materials, and amorph
systems@15#, the spatial disorder is often correlated. For e
ample, long-range spatial correlations have been found
wide number of systems, including biological, physical, ec
nomical, geological, and urban systems@16,17#. In this pa-
per, we report that the quenched disorder with long-ra
spatial correlations can induce a dispersive anomalous d
sive transport in periodic ratchets.

The motion of an overdamped particle, driven by an e
ternal periodic force on a ratchet with quenched disorde
considered with the form

h
dx

dt
52

dU~x!

dx
1Gsin~vt !1aj~x!, ~1!

where h, G, and v are, respectively, the damping coef
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cient, the amplification, and frequency of the external for
aj(x) is the fluctuation force due to the quenched disor
with long-range spatial correlations, witha (a>0) being
the strength of disorder. In the present work, the variab
j(x) are assumed to be long-range, power-law spatial co
lated, and are governed by the following relationship:

j~x!50 and j~x!j~x8!;ux82xu2g , ~2!

where the correlation exponentg is chosen to be in the rang
0,g,1 in one-dimensional motional system@17#. Note that
the quenched disorder termaj(x) remains constant with
time on the period of the potential@2kp,2(k11)p# with k
PZ.

Without loss of generality, the unperturbed ratchet pot
tial is chosen to be@8,11#

U~x!52sin~x!2m sin~2x!, ~3!

wherem is the asymmetry parameter with 0,m,1.
As the force due to quenched disorder with long-ran

spatial correlations will modify the potential~3!, it is natural
to investigate how long-range spatial correlations affect
chaotic diffusion. In order to introduce the random force w
long-range spatial correlations into the calculations,
modified Fourier-filtering method~MFFM! is adopted to
generate the random variablesj(x) @16#. In what follows, we
will normalize the long-range random numbers to havenj

5Aj i
22j i

251. To test the validity of MFFM, we calculate
the spatial correlation functionj ij0 @i.e., j( i )j(0)) averag-
ing over different realizations ofL5221 random numbers in
Fig. 1. It is seen that when the spatial correlation is we
i.e., g is large, there is a good agreement between the
merical simulation data~solid symbols! and the theoretica
curve l 2g ~hollow symbols!. As g decrease~the spatial cor-
relation degree becomes strong!, the numerical simulations
can still qualitatively characterize the theoretical curve we
although some discrepanices are found especially for
©2003 The American Physical Society04-1
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strong spatial correlation case atg50.05. In order to de-
crease such discrepancies, a more efficient filtering algori
based on wavelets@18# can be adopted. In Fig. 1~b!, it can be
easily seen that smaller the correlation exponentg, the more
smooth the landscapes of the disorder sequencesj i become.

We chooseh51.0, m50.25, andv50.1, so that the sys
tem shows nonzero drift velocity if the force due to t
quenched disorder is absent (a50). When we include the
quenched disorder forceaÞ0, the solutions of Eq.~1! can
show a complex behavior including the chaotic motio
Thus, averages of̂x(t)& and ^„x(t)…2& are performed over
the ensemble of trajectories, which include different reali
tions of disorder and the spatial distribution of the positio
of a particle. For numerical details, we use a variable s
Runge-Kutta method@19# to integrate Eq.~1! and calculate
the time seriesx(t) for 5000 trajectories starting from differ
ent initial conditions centered around the originx50. Then
averages such aŝx(t)&,^„x(t)…2& are performed over thes
ensembles. The ensemble described above is left to ev
for 4000 external by driven periods.

It has been shown that, in the case of quenched diso
force with no spatial correlations, the normal chaotic diff

FIG. 1. ~a! A log-log plot of the spatial correlation function
C( l )5j lj0 of 100 correlated samples with MFFM~solid symbols!
and theoretical curvel 2g ~hollow symbols! for L5221 and for dif-
ferentg. ~b! The random variables with long-range spatial corre
tion j i as a function ofi for different g.
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sive transport was observed in addition to the drift motion
the periodic ratchet@11,14#, described by the linear depen
dence of both the first and second momentsC1(t)5^x(t)&
andC2(t)5^(x(t)2^x(t)&)2& on timet. Here, as a first step
we calculateC1(t) andC2(t) as functions oft for different
values of disorder parametera and for a fixed correlation
exponentg50.2, and plot them in Fig. 2. It is found tha
from Fig. 2~a!, C1(t) is linear with timet, i.e., C1(t);Vt
with V being the drift velocity. Moreover, it can be seen th
the value ofC1(t) decreases with increasing the strength
disordera, and there is no change in the direction of dr
velocity for all values ofa. The linear dependence ofC1(t)
on t allows us to investigate the drift velocityV as a function
of a, as shown in the inset of Fig. 2~a!. It is evident that the
drift velocity decreases slightly when the disorder is in t
range of 0,a,0.01, and then decreases significantly wh
a.0.01. Thus, spatially correlated disorder can also s
press the drift velocity of a particle in a periodic ratch
driven by an external periodic force. It is quite interesting
find that, from Fig. 2~b!, when the quenched disorder wit

-

FIG. 2. The first and second momentsC1(t) and C2(t) as a
function of time t for G51.5 andg50.2. In the inset, the drift
velocity V is plotted as a function ofa.
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long-range spatial correlations is taken into account,
anomalous diffusive motion occurs due to the linear dep
dence of the natural logarithm of varianceC2(t) on the natu-
ral logarithm of timet @C2(t);tH, with the diffusion expo-
nentH.1]. Furthermore, with the increase ofa, the spatial
fluctuationsC2(t) increase significantly, in other words, th
diffusionlike motion is greatly enhanced.

Thus we conclude that the strength of disorder can
hance the anomalous chaotic diffusion, but suppress the
velocity. Such a conclusion is quite similar to the one wi
out the spatial correlation@11#. This can be understood a
follows. For small quenched disordera, the drift term
should not change significantly, even the correlated diso
will induce just small perturbations of the potential lan
scape.

In order to know the effects of the correlation degreeg on
the transport of a particle,C1(t) and C2(t) are plotted for
different g in Fig. 3 for a50.02 and in Fig. 4 fora50.04.
From Figs. 3~a! and 4~a!, one can see that there is no va
ance in the first momentC1(t) with increasing correlation
exponentg, and this thus indicates that the drift moment
indeed independent of the spatial correlation degree.

FIG. 3. C1(t) ~a! and C2(t) ~b! as a function of timet for G
51.5 anda50.02.
06210
e
-

-
ift
-

er

e

anomalous diffusive motion appears again for all values
g, and the curves ofC2(t) decrease asg increases@see Figs.
3~b! and 4~b!#. Thus, the degree of long-range spatial cor
lations enhances the anomalous diffusive motion, but it pl
no role in the magnitude of the drift velocity. This is a no
trivial effect, as the drift velocity will remain finite, althoug
the anomalous chaotic transport is enlarged.

It is known that when the anomalous diffusion motio
occurs, the range of diffusion exponentH is larger than 1.
For 1,H,2, the diffusion belongs to the dispersive on
while for H.2, the diffusion is the enhanced one@20,21#.
Thus it is of interest to investigate the effect of correlati
exponentg on the diffusion exponentH. In Fig. 5, the dif-
fusion exponentH, as a function of the correlation expone
g for differentG, is plotted. We only choosea50.02 in our
numerical calculations. In fact, the numerical results
other values ofa ~not shown here! indicate thatH is only
weakly dependent ona. From Fig. 5, it is evident that, asg
increases, i.e., the spatial correlation degree decreaseH
goes down steadily in the range 1.1–1.8. This suggests
the anomalous diffusion induced by the quenched disor
with long-range spatial correlations belongs to the dispers
one. As far as the effect forG is concerned, the curve forH

FIG. 4. Similar to Fig. 3, but fora50.04.
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becomes flatter and flatter, and the values are found to
concentrated on small ranges asG increases~for example,
1.1,H,1.8 for G51.5, while 1.3,H,1.65 for G51.7).
In fact, the dynamics of the particle is determined by t
unperturbated ratchet potential, the potential due to the p
odic force and the one due to the quenched disorder w
long-range power-law correlations. With increasingG, the
peroidic forces play a more important role in determining
motion of the particle and thus the influence of the lon
range spatial correlations becomes relatively small, resul
in a weak dependence ofH on g.

FIG. 5. The correlation exponentH as a functiong for a
50.02.
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In summary, we have shown that the long-range cor
lated spatial disorder on overdamped ratchets can lead
dispersive anomalous diffusive motion in addition to a reg
lar drift velocity. It is found that the increase of the streng
of quenched disordera can reduce the drift velocity, along
with the enhancement of the anomalous diffusion. More i
portantly, the decrease of the correlation exponentg ~i.e., the
increase of correlation degree! can further enhance th
anomalous diffusion phenomenon, but plays no role in
drift transport. Our results show that the magnitude of
diffusion transport can be controlled by adjusting an alter
tive freedom, i.e., the correlation exponentg. These conclu-
sions may help us to understand the transport process o
interpret the experimental results of nanoscale frictio
However, in nanoscale frictions, the finite mass of the p
ticles is important. Therefore, it would be of great interest
study the effects of quenched disorder with long-range s
tial correlations on the dynamics of a ratchet with a fin
mass.
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