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Dispersive anomalous diffusive transport in ratchets with long-range correlated spatial disorder
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The effects of quenched disorder with long-range spatial correlations on the transport properties of an
overdamped periodic ratchet are investigated. The modified Fourier-filtering method is applied to generate the
long-range correlated spatial disorder with statistical properi{es 7(x')~|x’—x| 7, wherevy is the corre-
lation exponent. Small amounts of this kind of quenched disorder are introduced in the equation of overdamped
motion of a continuous time system, and the first two momen@) = (x(t)) and C,(t) =((x(t) — (x(t)))?)
are calculated. We show that the drift velocity is almost independemt éfowever, as a consequence of the
long-range spatial correlations, the dispersive anomalous diffusve ni@igh) ~t"] appears in ratchets, with
the difussion exponentl (1<H<2) being dependent on. Moreover, we show that both the amount of
guenched disorder and the correlation degree can enhance the anomalous diffusive transport.
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The study of ratchets has received much attention due toient, the amplification, and frequency of the external force.
its role in describing the unidirectional transport of molecu-a£(x) is the fluctuation force due to the quenched disorder
lar motors[1], in modeling nanoscale frictiof2,3], in sur-  with long-range spatial correlations, witlh («=0) being
face smoothenin§4], and so or{5,6]. In the previous stud- the strength of disorder. In the present work, the variables
ies, the drift velocity for describing the transport of the £(x) are assumed to be long-range, power-law spatial corre-
particles in asymmetric periodic potentialgtchety was lated, and are governed by the following relationship:
studied by taking into account the time correlated fluctua- o
tions (noise [7]. The transport properties were also investi- Ex)=0 and &X)EX)~|x" —x|-7, 2
gated in deterministic, overdampédr inertig ratchets in-
cluding a time-periodic forcg8—10], and chaotic transport Where the correlation exponeptis chosen to be in the range
and current reversals could be found in these systems even @< y<1 in one-dimensional motional systdti7]. Note that
the absence of fluctuatioriaoise. More recently, quenched the quenched disorder termé(x) remains constant with
disorder was found to induce normal chaotic diffusive transtime on the period of the potentifPk,2(k+ 1)7] with k
port in overdamped and underdamped rachtisl?. How- e”.
ever, in these studies, the force due to quenched disorder was Without loss of generality, the unperturbed ratchet poten-
introduced in the equation of motion through the presence ofial is chosen to b¢8,11]
uniformly distributed random variables with no spatially cor-
relations, and the effects of spatially correlated disorder have U(x) = —sin(X) — u sin(2x), ©)
been neglectefll1-14. In fact, in many real disordered ma- ] ]
terials, such as polymers, porous materials, and amorpholyéh€rew is the asymmetry parameter with-Qu<1.
systemd 15], the spatial disorder is often correlated. For ex- AS the force due to quenched disorder with long-range
ample, long-range spatial correlations have been found in gPatial correlations will modify the potentiéd), it is natural
wide number of systems, including biological, physical, eco-0 investigate how Iong—range spatial correlations affect _the
nomical, geological, and urban systefds$,17. In this pa- chaotic dlffu5|on.lln order to '|ntrod_uce the random fqrce with
per, we report that the quenched disorder with long-rangé®nd-range spatial correlations into the calculations, the
spatial correlations can induce a dispersive anomalous diffunodified Fourier-filtering methodMFFM) is adopted to
sive transport in periodic ratchets. generate the random variablgs) [16]. In what follows, we

The motion of an overdamped particle, driven by an ex-Will normalize the long-range random numbers to havé
ternal periodic force on a ratchet with quenched disorder, is= \/§i2—§i2= 1. To test the validity of MFFM, we calculate

considered with the form the spatial correlation functiog &, [i.e., £(1)£(0)) averag-
q dU(x) ing over different realizations df =22* random numbers in

ax_ X . Fig. 1. It is seen that when the spatial correlation is weak,

KT dx FIsin(ot) + ag(x), @ i.e., y is large, there is a good agreement between the nu-

merical simulation datdsolid symbol$ and the theoretical
where 5, I', and w are, respectively, the damping coeffi- curvel ~” (hollow symbolsg. As y decreasedthe spatial cor-
relation degree becomes stronthe numerical simulations
can still qualitatively characterize the theoretical curve well,
*Mailing address: lgaophys@pub.sz.jsinfo.net although some discrepanices are found especially for the
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FIG. 1. (@ A log-log plot of the spatial correlation function
C(l)=§& &, of 100 correlated samples with MFFIgolid symbol3 10°
and theoretical curve™” (hollow symbol$ for L =22 and for dif-
ferenty. (b) The random variables with long-range spatial correla- t

tion ¢; as a function of for different . FIG. 2. The first and second momer@5(t) and C,(t) as a

. . function of timet for '=1.5 andy=0.2. In the inset, the drift
strong spatial correlation case @t=0.05. In order to de- \g|ocity v is plotted as a function of.

crease such discrepancies, a more efficient filtering algorithm

based on wavele{d 8] can be adopted. In Fig(h), it can be  sive transport was observed in addition to the drift motion in
easily seen that smaller the correlation expongrthe more  the periodic ratchef11,14], described by the linear depen-
smooth the landscapes of the disorder seque&ickecome. dence of both the first and second mome@tgt) = (x(t))

We choosep=1.0, ©=0.25, andw=0.1, so that the sys- andC,(t)={(x(t)—(x(t)))?) on timet. Here, as a first step,
tem shows nonzero drift velocity if the force due to thewe calculateC,(t) andC,(t) as functions of for different
guenched disorder is absent£0). When we include the values of disorder parameter and for a fixed correlation
qguenched disorder force+ 0, the solutions of Eq(l) can  exponenty=0.2, and plot them in Fig. 2. It is found that,
show a complex behavior including the chaotic motion.from Fig. 2a), C,(t) is linear with timet, i.e., C1(t)~Vt
Thus, averages ofx(t)) and {(x(t))?) are performed over with V being the drift velocity. Moreover, it can be seen that
the ensemble of trajectories, which include different realizathe value ofC,(t) decreases with increasing the strength of
tions of disorder and the spatial distribution of the positionsdisorder«, and there is no change in the direction of drift
of a particle. For numerical details, we use a variable stepelocity for all values ofa. The linear dependence 6f;(t)
Runge-Kutta metho@19] to integrate Eq(1) and calculate ont allows us to investigate the drift velocityas a function
the time seriex(t) for 5000 trajectories starting from differ- of «, as shown in the inset of Fig(&. It is evident that the
ent initial conditions centered around the origisr 0. Then  drift velocity decreases slightly when the disorder is in the
averages such ax(t)),((x(t))?) are performed over these range of 0<a<0.01, and then decreases significantly when
ensembles. The ensemble described above is left to evolwe>0.01. Thus, spatially correlated disorder can also sup-
for 4000 external by driven periods. press the drift velocity of a particle in a periodic ratchet

It has been shown that, in the case of quenched disordeiriven by an external periodic force. It is quite interesting to
force with no spatial correlations, the normal chaotic diffu-find that, from Fig. 2b), when the quenched disorder with
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FIG. 3. C4(t) (@) andC,(t) (b) as a function of time& for I' FIG. 4. Similar to Fig. 3, but foew=0.04.

=1.5 anda=0.02.

anomalous diffusive motion appears again for all values of

long-range spatial correlations is taken into account, they, and the curves dof,(t) decrease ag increase$see Figs.
anomalous diffusive motion occurs due to the linear depen3(b) and 4b)]. Thus, the degree of long-range spatial corre-
dence of the natural logarithm of varian€g(t) on the natu- lations enhances the anomalous diffusive motion, but it plays
ral logarithm of timet [ C,(t)~t", with the diffusion expo- no role in the magnitude of the drift velocity. This is a non-
nentH>1]. Furthermore, with the increase af the spatial trivial effect, as the drift velocity will remain finite, although
fluctuationsC,(t) increase significantly, in other words, the the anomalous chaotic transport is enlarged.
diffusionlike motion is greatly enhanced. It is known that when the anomalous diffusion motion

Thus we conclude that the strength of disorder can eneccurs, the range of diffusion expondtis larger than 1.
hance the anomalous chaotic diffusion, but suppress the driffor 1<H<2, the diffusion belongs to the dispersive one,
velocity. Such a conclusion is quite similar to the one with-while for H>2, the diffusion is the enhanced of20,21].
out the spatial correlatiopll]. This can be understood as Thus it is of interest to investigate the effect of correlation
follows. For small quenched disorder, the drift term  exponenty on the diffusion exponent. In Fig. 5, the dif-
should not change significantly, even the correlated disordefusion exponenH, as a function of the correlation exponent
will induce just small perturbations of the potential land- y for differentI’, is plotted. We only choose=0.02 in our
scape. numerical calculations. In fact, the numerical results for

In order to know the effects of the correlation degfeen  other values ofa (not shown hergindicate thatH is only
the transport of a particleC,(t) and C,(t) are plotted for weakly dependent on. From Fig. 5, it is evident that, ag
different y in Fig. 3 for «=0.02 and in Fig. 4 fow=0.04.  increases, i.e., the spatial correlation degree decreékes,
From Figs. 8a) and 4a), one can see that there is no vari- goes down steadily in the range 1.1-1.8. This suggests that
ance in the first moment,(t) with increasing correlation the anomalous diffusion induced by the quenched disorder
exponenty, and this thus indicates that the drift moment iswith long-range spatial correlations belongs to the dispersive
indeed independent of the spatial correlation degree. Thene. As far as the effect fdr is concerned, the curve fai
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1.84 In summary, we have shown that the long-range corre-
lated spatial disorder on overdamped ratchets can lead to a
dispersive anomalous diffusive motion in addition to a regu-
lar drift velocity. It is found that the increase of the strength
of quenched disordew can reduce the drift velocity, along
with the enhancement of the anomalous diffusion. More im-
portantly, the decrease of the correlation exponefite., the
increase of correlation degneean further enhance the
anomalous diffusion phenomenon, but plays no role in the
drift transport. Our results show that the magnitude of the
diffusion transport can be controlled by adjusting an alterna-
tive freedom, i.e., the correlation exponentThese conclu-
10 ' . . . ' sions may help us to understand the transport process or to
00 02 04 06 08 10 interpret the experimental results of nanoscale frictions.
However, in nanoscale frictions, the finite mass of the par-
ticles is important. Therefore, it would be of great interest to
FIG. 5. The correlation exponei as a functiony for « study the effects of quenched disorder with long-range spa-
=0.02. tial correlations on the dynamics of a ratchet with a finite
mass.
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